Abscissas and weights for Gaussian quadratures of high order
نویسندگان
چکیده
منابع مشابه
Abscissas and Weights for Gaussian Quadratures of High Order
Gaussian quadrature rules have hitherto been computed up to the case n = 16 with 15 place accuracy [1].1 In the work in the Numerical Analysis Section of the National Bureau of Standards, frequ ent use has been made of the rule n = 16 and even of halving and quartering the interval for increased accuracy . For this reason, it is felt that the constants for rules of higher order will prove to be...
متن کاملGaussian quadratures for oscillatory integrands
We consider a Gaussian type quadrature rule for some classes of integrands involving highly oscillatory functions of the form f (x) = f 1 (x) sin ζ x + f 2 (x) cos ζ x, where f 1 (x) and f 2 (x) are smooth, ζ ∈ R. We find weights σ ν and nodes x ν , ν = 1, 2,. .. , n, in a quadrature formula of the form 1 −1 f (x) dx ≈ n ν=1 σ ν f (x ν) such that it is exact for all polynomials f 1 (x) and f 2 ...
متن کاملHigh-Order Quadratures for Integral Operators with Singular Kernels
A numerical integration method that has rapid convergence for integrands with known singularities is presented. Based on endpoint corrections to the trapezoidal rule, the quadratures are suited for the discretization of a variety of integral equations encountered in mathematical physics. The quadratures are based on a technique introduced by Rokhlin (Computers Math. Applic. 20, pp. 51-62, 1990)...
متن کاملMore on Gaussian Quadratures for Fuzzy Functions
In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi,...
متن کاملOn Generalized Gaussian Quadratures for Bandlimited Exponentials
We review the methods in [4] and [24] for constructing quadratures for bandlimited exponentials and introduce a new algorithm for the same purpose. As in [4], our approach also yields generalized Gaussian quadratures for exponentials integrated against a non-sign-definite weight function. In addition, we compute quadrature weights via l and l∞ minimization and compare the corresponding quadratu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Research of the National Bureau of Standards
سال: 1956
ISSN: 0091-0635
DOI: 10.6028/jres.056.005